Volcano Watch: A summit collapse 150 years ago had similarities to the 2018 collapse

This Sept. 19 U.S. Geological Survey photo looks southward from the south caldera of Kilauea Volcano, showing the main collapse area. The south sulphur bank is in the left side of the photo. Uekahuna Bluff, from where this photo was taken, cuts across the bottom and lower right corner of the photo. After the collapse of 1868, the caldera floor might have looked something like this.
Subscribe Now Choose a package that suits your preferences.
Start Free Account Get access to 7 premium stories every month for FREE!
Already a Subscriber? Current print subscriber? Activate your complimentary Digital account.

The prolonged yet dramatic partial collapse of Kilauea caldera this past summer was the first to be observed in detail and the largest measured by subsidence volume of more than a dozen summit collapses in the past 200 years.

The earliest known collapses (1823, 1832 and 1840) were large in subsidence volume, but the process was not recorded by witnesses. The most recent collapses (1919, 1922 and 1924) involved smaller subsidence volumes, and were witnessed by Thomas Jaggar and his staff at the Hawaiian Volcano Observatory.

The collapse of 1868 was the first collapse after a hotel was established at the Kilauea summit. Various observers were present for a few days each during the first weeks of the event.

The months of March and April 1868 are most often associated with strong earthquakes and Mauna Loa eruptions. The strongest earthquake, estimated a magnitude 7.9, generated a tsunami and a landslide and also started a collapse of Kilauea summit.

According to Kaina, a Hawaiian resident of the summit area, Kilauea Crater was very active from late January to late March, with eight overflowing lava lakes. The lake activity increased greatly and, on March 27 when the first strong earthquakes (possible foreshocks of the M7.9 earthquake to follow) started, the crater floor was covered with lava lake overflows.

At a few minutes past 4 p.m. April 2, the above-mentioned M7.9 earthquake occurred, “which caused the ground around Kilauea to rock like a ship at sea. At that moment, there commenced fearful detonations in the crater, large quantities of lava were thrown up to a great height; portions of the wall tumbled in. This extraordinary commotion, accompanied with unearthly noise and ceaseless swaying of the ground, continued” for three more days as the lava receded. By April 5, there was no lava to be seen in the crater — Pele had left Kilauea.

The April 2 earthquake also triggered brief eruptions in Kilauea Iki Crater and in the Southwest Rift Zone. The Volcano House hotel might have suffered a cracked foundation.

William Hillebrand descended into Kilauea Crater on April 18: “At least two-thirds of the area of the crater towards W. and N.W. have caved in and sunk about 300 feet below the level of the remaining portion of the old floor.” South Lake, near the Halema‘uma‘u location, “was transformed into a vast pit, more than 500 feet deep.”

“The caving in of the floor seemed to be still in progression, for twice during our exploration of the crater, our nerves were disturbed by a prolonged heavy rumbling and rattling noise, as from a distance platoon fire of musketry.” The collapse of the summit caldera that started April 2 was still going on April 18.

Hillebrand also noticed only the “faintest trace” of the “stifling, sulphurous and acid gases” in the vicinity of lava lakes where those gases were formerly overpowering.

The 2018 sequence of events had some similarities to the 1868 sequence.

The level of the Kilauea summit lava lake rose through April of this year and started dropping May 3 as the lower Puna eruption commenced. On May 4, a magnitude-6.9 earthquake occurred and on May 16, Kilauea summit explosive events began. During the next few weeks, subsidence of the summit caldera floor began and continued for more than two months. Gas emissions decreased dramatically.

The descriptions of the 1868 collapses involving detonations, avalanches of the walls and sinking of a large portion of the crater floor could also describe many of the 2018 caldera down-drop events; both the 1868 and 2018 summit subsidence events involved a large part of the Kilauea caldera floor with a deep pit where Halema‘uma‘u had been.

The estimates of the amount of 1868 caldera floor subsidence, between 0.2 and 0.5 cubic km (0.05 and 0.11 cubic mi), are smaller than the measurement of more than 0.75 cubic km (0.18 cubic mi) of 2018 caldera subsidence.

After the 1868 summit collapse and withdrawal of the lava lakes, lava returned for brief moments. The first reappearance was recorded April 19 for less than an hour. By August and September 1868, visitors reported that the deep pit was refilling, and the South Lake was active once more.

Kilauea summit collapses accompanied by lava lake draining are a routine part of the long-term refilling of the current caldera produced centuries ago. Each collapse has been followed eventually by reappearance of lava months to years later. We are waiting to see what will happen next.

Volcano activity updates

Kilauea is not erupting. Low rates of seismicity, deformation and gas release have not changed significantly during the past week.

Small earthquakes at Kilauea’s summit continue, as do aftershocks of the May 4 magnitude-6.9 earthquake on the volcano’s south flank.

A slight inflationary trend near and east of Pu‘u ‘O‘o suggests that magma might be refilling the middle East Rift Zone. Low seismicity and reduced gas emissions do not indicate that the magma is shallow, but HVO continues to closely monitor this area and will report any significant changes.

Sulfur dioxide (SO2) emissions across Kilauea remain drastically reduced, with a combined rate of less than 300 tonnes/day. Small amounts of hydrogen sulfide gas (H2S) are being released in cooler, wetter volcanic environments and from decaying vegetation and other organic matter. The human nose is extremely sensitive to the “rotten egg” smell of H2S; some people can detect this gas at less than 0.001 parts per million. Residents have reported smelling H2S downwind of Kilauea, but these concentrations are well below hazardous levels. More information can be found at http://ivhhn.org/information#gas.

Hazardous conditions still exist at both the LERZ and summit. Residents in the lower Puna District and Kilauea summit areas should stay informed and heed Hawaii County Civil Defense closures, warnings and messages (http://www.hawaiicounty.gov/active-alerts).

The USGS Volcano Alert level for Mauna Loa remains at Normal.

One earthquake on the Island of Hawaii received three or more felt reports (minimum to be recounted here) this past week. A magnitude-2.7 earthquake 7 km (4.3 mi) west-northwest of Kalaoa at a depth of 10 km (6.2 mi) was reported felt at 4:22 p.m. Nov. 5.

Visit HVO’s website (https://volcanoes.usgs.gov/hvo) for past Volcano Watch articles, Kilauea and Mauna Loa updates, volcano photos, maps, recent earthquake info, and more. Call 808-967-8862 for weekly Kilauea updates. Email questions to askHVO@usgs.gov.

Volcano Watch (https://volcanoes.usgs.gov/hvo/hvo_volcano_watch.html) is a weekly article and activity update written by U.S. Geological Survey Hawaiian Volcano Observatory scientists and affiliates.