Volcano Watch: The mixture of lava and seawater creates an explosive hazard

M. PATRICK/U.S. Geological Survey photo This telephoto image shows dark fragments of molten and semi-solid lava being blasted upward and outward during a hydrovolcanic explosion at the Waikupanaha ocean entry west of Kalapana in April 2008. Similar explosions are occurring at Kilauea Volcano’s current lower East Rift Zone ocean entry.
Subscribe Now Choose a package that suits your preferences.
Start Free Account Get access to 7 premium stories every month for FREE!
Already a Subscriber? Current print subscriber? Activate your complimentary Digital account.

Since May 3, Kilauea Volcano’s lower East Rift Zone eruption has destroyed more than 700 structures, covered more than 32 sq km (12.4 sq mi) of land with black lava and added about 700 acres of new land to the island. Yet, remarkably, injuries were few.

But then, on July 16, a large underwater explosion sent lava bombs (solid or semi-solid lava fragments) the size of basketballs through the roof of a tour boat, injuring 23 volcano watchers. The detailed cause of the explosion is uncertain, but we are fairly certain it resulted from the heating of seawater by molten lava.

Underwater explosions are enigmatic and can be deadly. They also have fascinated scientists since a transformational event in 1963. That year, at first dawn Nov. 13, Icelandic fishermen stared with awe as, beyond the bow of their boat, jets of black tephra launched out of the sea in long, arcing trajectories that resembled rooster tails. The jagged front of each tail was tipped by finger-like projections, each led by a large flying block.

A new volcanic vent, Surtsey, emerged days earlier from the 130-m (almost 430-ft) deep ocean bottom. By that fateful morning, it had shallowed to several meters (yards) depth and explosions were beginning to breach the water surface. From 1963-67, the world gaped at magazine and television images of the activity.

As the vent emerged, “intermittent explosions” with cock’s-tail plumes and finger jets, alternated with continuous jetting of wet ash and steam. Some intermittent explosions shot tephra columns upward, which then collapsed back to the water surface and moved radially outward as ring-shaped clouds. Only after the vent fully emerged from the sea did the explosive behavior give way to normal basaltic lava fountains and flows.

The eruption of Surtsey, more than any other, demonstrated the explosive effect of water in volcanism. Terms such as “cock’s-tail plume,” “finger jet,” “Surtseyan eruption” and “hydrovolcanism” entered the volcanic lexicon.

Scientists noted similarities to other phenomena. Ring-shaped clouds called “base surges,” for example, rolled outward during the 1946 atomic blast at Bikini atoll. Similar violent melt-water explosions plagued aluminum foundries and steel mills when those metals inadvertently mixed with water.

In the 1970s and 1980s, many nuclear power plants were under construction, and engineers were spooked by the prospect of nuclear fuel melting through the plants’ floors into groundwater and exploding. Melt-water explosions acquired a name — fuel-coolant interactions — but not a clear explanation. Experiments pouring metals, such as tin, into water found that explosions were devilishly hard to reproduce.

By the 1990s, scientists found a complicated sequence that required (1) dispersing melt blobs in water and then (2) passing a shock wave through the mixture that stripped off the steam jackets that insulated them. Whether this sequence causes Surtseyan explosions has been controversial.

German experiments using magma (rather than metals) found success using a similar two-step process, but with step one involving water bubbles entrapped in melt. Laboratory experiments, however, are not good at capturing the dynamics and complexity of real lava-water mixing. So, here we see the value of Kilauea as a natural laboratory.

Kilauea lava flows have entered the ocean for decades. During most of the Pu‘u ‘O‘o eruption, molten lava flowed beneath the waves with minor splashing but no real jetting. In a few cases, though, black tephra jets and steam were violently thrown tens of meters (yards) into the air.

These occasions were of great concern, and found to occur under two conditions: (1) when a lava delta collapses into the sea, exposing a severed tube and molten lava to ocean waves, or (2) when a submarine lava tube ruptures, allowing water entry, and is then partly blocked. The confined water heats like that in a pressure cooker and then explodes when the tube walls rupture.

Explosions of this type have occurred periodically throughout Kilauea’s East Rift Zone eruption. Last week’s explosions suggest tubes lie below the waves at the current ocean entry, and that more explosions are possible.

The explosions at Kilauea’s ocean entry are smaller than the big Surtseyan cock’s-tail jets. The latter occurred above an active vent, whereas the former are fed by surface flows. But Kilauea’s explosions are the best observed of any hydrovolcanic explosions — and they offer the best insight into how they form.

Volcano activity updates

On Kilauea Volcano’s lower East Rift Zone, lava continued to erupt primarily from fissure 8, feeding a channelized flow northeastward from the vent, then extends west of Kapoho Crater and on to the main ocean entry just west of the Ahalanui area. As of July 20, the southern margin of the flow was about 500 m (0.3 mi) from the boat ramp at Isaac Hale park. Sulfur dioxide emissions from the active fissure remain high. Residents in the lower Puna District should stay informed and heed Hawaii County Civil Defense closures, warnings and messages (http://www.hawaiicounty.gov/active-alerts).

At Kilauea’s summit, collapse events continued to occur during the past week, releasing energy equivalent to earthquakes of magnitudes 5.1-5.4. Inward slumping of the rim and walls of Halema‘uma‘u continues in response to ongoing subsidence at the summit, resulting in frequently felt earthquakes. Three or more felt reports were submitted for 53 of the earthquakes that occurred in Hawaii during the past week.

At Mauna Loa, HVO seismic and deformation monitoring networks have recorded near background levels of seismicity and ground motion for at least the past six months. These observations indicate the volcano is no longer at an elevated level of activity. Accordingly, HVO dropped the Mauna Loa alert level to Normal and the aviation color code to Green on June 21. HVO continues to monitor the volcano closely and will report any significant changes.

Visit HVO’s website (https://volcanoes.usgs.gov/hvo) for past Volcano Watch articles, Kilauea daily eruption updates, Mauna Loa weekly updates, volcano photos, maps, recent earthquake info and more. Call for summary updates at 808-967-8862 (Kilauea) or 808-967-8866 (Mauna Loa). Email questions to askHVO@usgs.gov.

Volcano Watch (https://volcanoes.usgs.gov/hvo/hvo_volcano_watch.html) is a weekly article and activity update written by U.S. Geological Survey Hawaiian Volcano Observatory scientists and affiliates. This week’s article is by Larry Mastin, a Cascades Volcano Observatory hydrologist, who is assisting with the USGS eruption response in Hawaii.